
© 2015 Prof. Dr. R. Manthey 11Temporal Information Systems 1

SS 2015

Temporal Information Systems

„Time About Data“ –
Keeping a History of Change

Chapter 3

© 2015 Prof. Dr. R. Manthey 22

IS and Change: Some Philosophy Ahead (1)

Prevailing philosophy of information system
design and usage:

At every instant of time:

The contents of the information system
reflects a particular state of the „world“!

Databases represent snapshots of the world (ideally, as it is just now)!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 33

IS and Change: Some Philosophy Ahead (2)

• Changes of „the world“ ought to be reflected by changes of the IS (we can‘t be sure, though!).

• IS evolution is always delayed wrt world evolution, but it often changes synchronously.

• However, there may be cases where the world changes more often than the IS:
Several changes of the world may be reflected by a single change of the IS.

• An IS evolves only if the world has changed before –
IS never change without a cause originating from „the world“.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 44

IS and Change: Some Philosophy Ahead (3)

time

• Every change in the world takes place at a particular moment in time. So does every
change of the database!

• This moment in time might be unknown, or considered irrelevant for the IS.

• Thus, the time of change is not always recorded in the IS.

• Even the sequence of changes occurring might be lost once reflected in the IS.

• Many (most?) IS do just represent the current state of the world, but no history at all!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 55

Databases That Never Forget

„The database is not the database – the log is the database,
and the database is just an optimized access path to the
most recent version of the log“.

(B.-M. Schueler in „Update Reconsidered“, 1977)

• This chapter will be concerned with techniques of keeping track of all changes of
certain tables of a temporal database by logging each change and keeping all versions
of the resp. tables.

• Such versioned databases are required nowadays in a wide variety of application
domains, in particular when legal problems (e.g., liability and auditing) have to be
expected. More and more often, the provenance (history of origin) of data has to be proved.

• The technical key decision for such services is to automatically record all changes
without human users being able to influence this process (administrators included).
Key problem is how to properly query such databases (and, sometimes, how to update
them properly).

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 6

Reminder (From Chapter 0): Logs

Even later:
Ship‘s logbook, used
for recording changes
of direction and rele-
vant events of a trip

Later: „Tally stick“, used for
recording consumption

Log: originally „part of the stem of a tree“

(The „log lady“
from the TV series
„Twin Peaks“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 7

Another Reminder: Log and Logging in Transaction Management

• The terms log/logging are well-known in the DB context, as they have been around
in the context of transaction management in a DBMS since many decades.

• Transactions are sequences of change statements treated as a unit, i.e., they are either
performed entirely (and successfully), or not at all, not even partially, in case of „fail-
ure“ of at least one of the component operations (atomicity of a transaction).

• Every DBMS controls every transaction wrt physical and logical consistency and
protects and controls execution order in case of „competing“ transactions simulta-
neously trying to modify the same data (synchronisation).

• If any unresolvable problem occurs, execution of the affected transaction is stopped,
and all changes to the DB already performed are rolled back till a consistent previous
state has been reached (recovery).

• In order to be able to perform rollback, a temporary log of all performed operations of
each active transaction is kept by the transaction manager of the DBMS.

The log we are speaking about here, is a different one – kept permanently!!

© 2015 Prof. Dr. R. Manthey 8

Keeping Data About History

time

• In this chapter, we will clearly separate the data part of a relational tuple from the
history part of that same tuple:

Timestamps added to tuples (representing facts in reality) denote those
periods during which the resp. tuple was current in the database.

• Current changes in reality (called logical modifications) are always translated into
physical modifications of the history DB preserving past data and recording the
time of modification by means of start/end timestamps.

• Without explicitly mentioning, we assume that timestamps refer to the time of DB
modification rather than to the time of „change in the real world“.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 9

Timestamp: Dual Meaning – Beware of the Ambiguity!

The term „timestamp“ has been used on the previous
slide in a different sense than in chapter 2 – both forms
of usage are common in TDB research!

1) In SQL, there is the data type TIMESTAMP
consisting of DATE-TIME values.

2) In databases keeping history of change of tables,
the value of some temporal data type added to each
tuple (representing facts in reality) in order to indicate
when these tuples were „valid“ in reality or in the
database, the additional temporal value is called
the timestamp of the resp. tuple.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 10

Transaction Time

time

• In temporal DB research, storing those instants when data change in the DB, resp., those
periods when data were current in the DB, is called keeping transaction time.

• Ideally, transaction timestamps are referring to the system clock, not to the watches of
humans issuing modification commands. Again ideally, transaction time timestamps
are generated automatically by the DBMS.

• Even more ideally, TT timestamps cannot be modified by human users later on anymore!

• In comparison, time of change in reality will be called valid time.
Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 11

ATTENTION: We are Using Transaction Time for History Keeping!

• This chapter mainly follows
chapters 5-7 in the book by
Snodgrass, but . . .

• whereas Snodgrass discusses
history keeping in terms of
timestamps referring to the
clock of „the world“ (valid time),

• we do so in terms of the clock of
the DBMS (transaction time)!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 1212

Reminder: Exams Database with Potential Mistakes and Corrections

Student Class Signed_up Dropped Grade Exam Date

John 1203 11.11.2010 1,3 13.2.2011

Jack 1203 19.11.2010 2.1.2011

Tim 1203 21.11.2010 3,0 18.3.2011

Pete 1203 27.11.2010 3.2.2011 5,0 18.3.2011

John 2201 11.11.2010 1,7 19.2.2011

Jack 2201 2.1.2011

Tim 3203 2.12.2010 3,7 1.4.2010

Failed or
dropped?

Mistyped?Sign-up date missing?

Snapshot of the DB as of April 1st, 2011

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 1313

After Several Corrections (Done, but not Recorded)

Student Class Signed_up Dropped Grade Exam Date

John 1203 11.11.2010 1,3 13.2.2011

Jack 1203 19.11.2010 2.1.2011

Tim 1203 21.11.2010 2,7 18.3.2011

Pete 1203 27.11.2010 3.2.2011

John 2201 11.11.2010 1,7 19.2.2011

Tim 3203 2.12.2010 3,7 1.4.2011

Snapshot of the DB as of April 8th, 2011

Temporal Information Systems

All being valid time values!

© 2015 Prof. Dr. R. Manthey 1414

Keeping Track of All Changes (Using Simulated Periods as Timestamps)

Student Class Signed_up Dropped Grade Exam Date From To

John 1203 11.11.2010 11.11.2010 14.2.2011

John 1203 11.11.2010 1,3 13.2.2011 14.2.2011

Jack 1203 19.11.2010 19.11.2010 2.1.2011

Jack 1203 19.11.2010 2.1.2011 2.1.2011

Tim 1203 21.11.2010 21.11.2010 20.3.2011

Tim 1203 21.11.2010 3,0 18.3.2011 20.3.2011 8.4.2011

Tim 1203 21.11.2010 2,7 18.3.2011 8.4.2011

Pete 1203 27.11.2010 27.11.2010 3.2.2011

Pete 1203 27.11.2010 3.2.2011 3.2.2011 21.3.2011

Pete 1203 27.11.2010 3.2.2011 5,0 18.3.2011 21.3.2011 6.4.2011

Pete 1203 27.11.2010 3.2.2011 6.4.2011

John 2201 11.11.2010 11.11.2010 21.2.2011

John 2201 11.11.2010 1,7 19.2.2011 21.2.2011

Jack 2201 2.1.2011 2.11.2010 7.4.2011

Tim 3203 2.12.2010 3,7 1.4.2010 1.4.2011 4.4.2011

Tim 3203 2.12.2010 3,7 1.4.2011 4.4.2011

Temporal Information Systems

Data part

History part

Valid time

Transaction time

© 2015 Prof. Dr. R. Manthey 151515

Motivating Discussion for History Keeping

EMPLOYEES (SSN, LAST_NAME, FIRST_NAME,
ANNUAL_SALARY, BIRTH_DATE)

INCUMBENTS (EMP, POS)

POSITIONS (PCN, JOB_TITLE_CODE)

JOB_TITLES (JOB_TITLE_CODE, JOB_TITLE)

In the following, we will discuss issues, implications and alternative solutions for the
problem of keeping track of all changes using the running example used in the Snodgrass
book in chapters 5-7:

foreign keys

How to keep history of all changes by extending these tables?
(not by storing separate archives – we want to query past
data like present data)

Temporal Information Systems

Here, Snodgrass uses SSN and PCN, resp.!

Employees occupying the positions

© 2015 Prof. Dr. R. Manthey 161616

INCUMBENTS Extended with a Date Timestamp

EMP POS SINCE
111223333 900225 1996-01-01
111223333 120033 1996-06-01
111223333 137112 1996-10-01
444332222 120033 1997-01-01

INCUMBENTS

How to extend the INCUMBENTS table in view of being able to record the history
of position assignments in the company?

1st idea:
Add a single column
for recording the start
date of any assignment!

Obvious disadvantages:
• It is not possible to record if somebody lost his position without being

reassigned a new one, e.g.:
111223333 is fired on 1996-10-31

• Gaps in assignment cannot be represented either:
111223333 is without assignment during September 1996,
and only reassigned a position on 1996-10-01.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 171717

INCUMBENTS Extended with a Period Timestamp

EMP POS START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-01
111223333 120033 1996-06-01 1996-09-01
111223333 137112 1996-10-01 1996-10-31
444332222 120033 1997-01-01 ?

INCUMBENTS
1-month gap

end of employment

Both problems can be avoided if the period of assignment is represented in full –
in Snodgrass‘ book, periods are „simulated“ using two date columns. Throughout
the following, we will represemt periods as [close, open) intervals:

A new problem arises though: How to deal with current assignments?
• If the contract provides a specified end date, this may be used for delimiting

the assignment period, even though it ranges into the future.
• But what if there is no assignment end in the contract, i.e. if assignment is

„until changed“ or „until employee fired“?

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 181818

Representing Open-Ended Assignments: Four Alternatives

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 0001-01-01

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 2015-05-14

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 9999-12-31

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 NULL

a) Using a very much earlier date, e.g., begin of times:

b) Using today as end date – changing every day at midnight:

c) Using a date very much in the future, e.g. end of times:

d) Leaving the respective field empty, i.e., using a null value implicitly:

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 191919

Representing Open-Ended Assignments (2)

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 0001-01-01

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 2011-05-23

a) Using a very much earlier date, e.g., begin of times:

b) Using today as end date – changing every day at midnight:

• current queries: WHERE END_DATE = '0001-01-01'
• unintuitive: Convention has to be communicated to everybody!
• not really recommended

• current queries: WHERE END_DATE = CURRENT_DATE‚
• Effort for keeping up to date is prohibitively high!
• not at all recommended

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 202020

Representing Open-Ended Assignments (3)

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 9999-12-31

EMP POS START_DATE END_DATE
444332222 120033 1997-01-01 NULL

c) Using a date very much in the future, e.g. end of times:

d) Leaving the respective field empty, i.e., using a null value implicitly:

• current queries: WHERE END_DATE = '9999-12-31'
• Semantically problematic if „real“ future timestamps are to be expected!
• Probably the best choice among the four less than ideal choices!

• current queries: WHERE END_DATE IS NULL
• Prevents other usage of NULL (with different meaning)!
• END_DATE not comparable with other dates!
• not really recommended

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 212121

Potential Trouble with Overlapping or Meeting Assignment Periods

EMP POS START DATE END DATE
111223333 900225 1996-01-01 1996-05-01
111223333 900225 1996-03-01 1996-06-01
111223333 120033 1996-06-01 1996-08-01
111223333 120033 1996-08-01 1996-10-01

A state like the following is possible (if by mistake or carelessness) in the INCUMBENTS
table – it is not very pleasant (and troublesome for query answering) to admit overlapping
or meeting periods of assignment, at least for the same position (maybe double assignments
for different positions is admissible):

overlaps

meets

Obviously, the following, „non-redundant“ representation is to be preferred:

EMP POS START DATE END DATE
111223333 900225 1996-01-01 1996-06-01
111223333 120033 1996-06-01 1996-10-01

On first glance, the „redundancy“ in the first case seems to come from violating the
primary key constraint in the extended table. But is this really the solution?

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 222222

Primary Keys and Timestamps (1)

SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-01
111223333 120033 1996-06-01 1996-09-01
111223333 900225 1996-09-01 1996-10-01
111223333 137112 1996-10-01 1996-10-31

What if an employee is reassigned to a position (s)he already occupied earlier, as in the
following case:

The original primary key (SSN, PCN) only states, that at every point in time the table
INCUMBENTS is free of duplicate rows.

After adding a period timestamp to each row, the original key would in addition prevent
any reassignments ever – which might be far too strong. Thus, it is necessary to include
the timestamp into the primary key as well! We call this a „temporal key“.

There are three alternatives how to design a temporal key for this table:

(SSN, PCN, START_DATE), or (SSN, PCN, END_DATE), or
(SSN, PCN, START_DATE, END_DATE)

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 232323

Primary Keys and Timestamps (2)

SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-05-01
111223333 900225 1996-04-01 1996-06-01
111223333 120033 1996-06-01 1996-09-01
111223333 137112 1996-10-01 1996-10-31

A slight modification of the previous example (introducing an overlap again) shows that
none of the three candidate keys prevents this situation:

(SSN, PCN, START_DATE): satisfied
(SSN, PCN, END_DATE): satisfied
(SSN, PCN, START_DATE, END_DATE): satisfied

The purpose of extending the key was to prevent any duplicate row in any of the
temporal snapshots of this historical table.

However, for every day in April, the assignment of 111223333 to 900225 is represented
twice.

Temporal Information Systems

overlaps

How to avoid this?

© 2015 Prof. Dr. R. Manthey 24

Sequenced or Snapshot Timestamping

SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-06-01

• A key idea of history keeping is to be able to represent the presence of a particular
fact in the DB at every moment in time. The period representation is just a shorthand
for the more detailed instant („snapshot“) representation:

SSN PCN DATE
111223333 900225 1996-01-01
111223333 900225 1996-01-02
111223333 900225 1996-01-03
. . .
111223333 900225 1996-05-31

• We call this „expanded“ representation, which uses instant timestamping, the
sequenced version of the history.

Don‘t forget;
Periods are intervals
written in [close,open)
style!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 25

Expanding Period Timestamps and Duplicates (1)

Temporal Information Systems

SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-05-01
111223333 900225 1996-04-01 1996-06-01

When expanding several timestamped rows into sequenced form, each period is
expanded separately. Thus, if timestamp periods overlap, duplicate rows will result
in the sequenced representation:

SSN PCN DATE
111223333 900225 1996-01-01
. . .
111223333 900225 1996-04-01
111223333 900225 1996-04-02
. . .
111223333 900225 1996-04-30
111223333 900225 1996-04-01
. . .
111223333 900225 1996-04-30
111223333 900225 1996-05-01
. . .
111223333 900225 1996-05-31

1st row expanded

2nd row expanded

Duplicate April days

Thus, no key exists
that solves the
uniqueness problem!

overlaps

© 2015 Prof. Dr. R. Manthey 26

Expanding Period Timestamps and Duplicates (2)

Temporal Information Systems

SSN PCN START_DATE END_DATE
111223333 900225 1996-01-01 1996-05-01
111223333 900225 1996-05-01 1996-06-01

Situations where two timestamped rows are identical in the non-temporal part,
but have meeting timestamps is different in this respect (as compared to the overlaps
case)! Even though combining both rows by „merging“ the two timestamps is still
preferable, no duplicate (and thus key) problems arise, however, in the sequenced
representation of the data:

SSN PCN DATE
111223333 900225 1996-01-01
. . .
111223333 900225 1996-04-01
111223333 900225 1996-04-02
. . .
111223333 900225 1996-04-30
111223333 900225 1996-05-01
. . .
111223333 900225 1996-05-31

1st row expanded

2nd row expanded

No duplicate entries after expansion!

meets

© 2015 Prof. Dr. R. Manthey 272727

Primary Keys and Timestamps (3)

Temporal Information Systems

• The problem we just started to investigate (How to avoid duplicates in a „table
with history keeping“?) does not have an easy solution in traditional SQL!

• For now, we will postpone a further discussion of the temporal key problem to
the end of this lecture.

• The related problem of temporal foreign keys will also be discussed later.

• Instead, we start treatment of queries on tables with TT timestamps . This will be
continued in three weeks, followed by discussion of modifications of this kind of
tables.

© 2015 Prof. Dr. R. Manthey 2828

Classifying Queries on Historical Tables

• non-temporal queries: ignoring timestamps
• temporal queries: referring to timestamps

• time-slice queries: evaluated at one specific point in time
• current queries: timestamp period overlapping „now“
• past/future queries: timestamp period overlapping some

specific past/future instant
• sequenced queries: evaluated at each point in time and

referring to the entire history
• non-sequenced queries: evaluated over a history but treating timestamps

as „ordinary“ columns

As already discussed in the context of temporal keys, there are 4 different kinds of queries
that can be distinguished wrt their relationship to temporal aspects:

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 292929

Example Extended and „Temporalized“

EMPLOYEES (SSN, LAST_NAME, FIRST_NAME,
ANNUAL_SALARY, BIRTH_DATE)

INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

POSITIONS (PCN, JOB_TITLE_CODE)

JOB_TITLES (JOB_TITLE_CODE, JOB_TITLE)

SAL_HISTORY (SSN, AMOUNT, START_DATE, END_DATE)

For the following discussion, assume that there is an additional table recording the
salary history of each employee – both, this one and INCUMBENTS being historical:

What is Bob's current position?

Let us turn to query answering now:

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 303030

Current Queries (1)

SELECT P.JOB_TITLE_CODE
FROM EMPLOYEES AS E,

INCUMBENTS AS I,
POSITIONS AS P

WHERE E.FIRST_NAME = 'Bob'
AND E.SSN = I.SSN
AND I.PCN = P.PCN
AND (CURRENT_DATE,

CURRENT_DATE + INTERVAL '1' DAY)
OVERLAPS (I.START_DATE, I.END_DATE)

What is Bob's current position?

This query works, if the „until changed“ end date is represented by a far away
future date (e.g., end of time).

As only INCUMBENTS is a historical table, no other tests for „now“ are required.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 313131

Current Queries (2)

SELECT JOB_TITLE_CODE1, AMOUNT
FROM EMPLOYEES AS E,

INCUMBENTS AS I,
POSITIONS AS P,
SAL_HISTORY AS H

WHERE E.FIRST_NAME = 'Bob'
AND E.SSN = I.SSN
AND I.PCN = P.PCN
AND (CURRENT_DATE, CURRENT_DATE + INTERVAL '1' DAY)

OVERLAPS (I.START_DATE, I.END_DATE)
AND H.SSN = E.SSN
AND (CURRENT_DATE, CURRENT_DATE + INTERVAL '1' DAY)

OVERLAPS (H.START_DATE, H.END_DATE)

What is Bob's current position and salary?

As now two historical tables are joined, two tests for validity „now“ are required!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 323232

Past Queries

What was Bob's position at the beginning of 1997?

SELECT JOB_TITLE_CODE1
FROM EMPLOYEES AS E,

INCUMBENTS AS I,
POSITIONS AS P

WHERE E.FIRST_NAME = 'Bob'
AND E.SSN = I.SSN
AND I.PCN = P.PCN
AND (I.START_DATE, I.END_DATE)

OVERLAPS (DATE '1997-01-01', DATE '1997-01-02')

This works exactly like asking for the current date!

Queries asking for the state of affairs on a particular date are called
snapshot or time-slice queries.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 333333

Sequenced Queries

Who makes or has made more than $50,000 annually?

SELECT *
FROM SAL_HISTORY
WHERE AMOUNT > 50000

This returns each high-paid employee from current and past including timestamps,
i.e., the answer table is a historical one, too.

Who makes or has made more than $50,000 or less than $10,000 annually?

(SELECT *
FROM SAL_HISTORY
WHERE AMOUNT > 50000)

UNION ALL
(SELECT *
FROM SAL_HISTORY
WHERE AMOUNT < 10000)

sequenced union

sequenced selection

sequenced projection

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 343434

Sequenced Join (1)

Provide the salary and position history for all employees.

SELECT H.SSN, H.AMOUNT, I.PCN, ?.START_DATE, ?.END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE H.SSN=I.SSN AND . . .

SSN AMOUNT START DATE END DATE
111223333 15.75 1995-03-01 1996-05-01
111223333 16.25 1996-05-01 1997-06-01
111223333 17.00 1997-06-01 1998-01-01

SAL HISTORY

SSN PCN START DATE END DATE
111223333 341288 1995-03-01 1996-01-01
111223333 137112 1996-01-01 1996-10-01
111223333 120033 1996-10-01 1997-06-01
111223333 908654 1997-06-01 1998-01-01
111223333 723401 1997-10-01 1998-01-01

INCUMBENTS

(two historical tables)

sequenced join

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 353535

Sequenced Join (2)

SSN AMOUNT START DATE END DATE
111223333 15.75 1995-03-01 1996-05-01
111223333 16.25 1996-05-01 1997-06-01
111223333 17.00 1997-06-01 1998-01-01

SAL HISTORY

SSN PCN START DATE END DATE
111223333 341288 1995-03-01 1996-01-01
111223333 137112 1996-01-01 1996-10-01
111223333 120033 1996-10-01 1997-06-01
111223333 908654 1997-06-01 1998-01-01
111223333 723401 1997-10-01 1998-01-01

INCUMBENTS

[)

INCUMBENTS

SAL_HISTORY

[)

[)[)

[)[)[)[)

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 363636

Sequenced Join (3)

SSN AMOUNT START DATE END DATE
111223333 15.75 1995-03-01 1996-05-01
111223333 16.25 1996-05-01 1997-06-01
111223333 17.00 1997-06-01 1998-01-01

SAL HISTORY

SSN PCN START DATE END DATE
111223333 341288 1995-03-01 1996-01-01
111223333 137112 1996-01-01 1996-10-01
111223333 120033 1996-10-01 1997-06-01
111223333 908654 1997-06-01 1998-01-01
111223333 723401 1997-10-01 1998-01-01

INCUMBENTS

SSN AMOUNT PCN START DATE END DATE
111223333 15.75 341288 1995-03-01 1996-01-01
111223333 15.75 137112 1996-01-01 1996-05-01
111223333 16.25 137112 1996-05-01 1996-10-01
111223333 16.25 120033 1996-10-01 1997-06-01
111223333 17.00 908654 1997-06-01 1998-01-01
111223333 17.00 723401 1997-10-01 1998-01-01

salary and position
history

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 373737

Sequenced Join (4)

Provide the salary and position history for all employees.

A proper SQL formulation of this query requires to catch all possible situations where
an INCUMBENTS row and a SAL_HISTORY row are jointly valid on at least one day.
9 of the 13 Allen relationships between intervals satisfy this condition:

starts
during
equals

starts-1

during-1

These 9 cases can be summarized using 4 disjoint conditions, such that the overall query
consists of four subqueries (guaranteed not to have any answer in common):

(SELECT . . . FROM . . .)
UNION ALL

(SELECT . . . FROM . . .)
UNION ALL

(SELECT . . . FROM . . .)
UNION ALL

(SELECT . . . FROM . . .)

finishes
overlaps

finishes-1

overlaps-1

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 383838

Sequenced Join (5)

Provide the salary and position history for all employees.

SELECT H.SSN, H.AMOUNT, I.PCN, H.START_DATE, H.END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE . . .

. . . H.SSN = I.SSN
AND I.START_DATE <= H.START_DATE
AND H. END_DATE <= I.END_DATE

[)INCUMBENTS

SAL_HISTORY
[)

h starts i h during i h finishes i h equals i

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 393939

Sequenced Join (6)

Provide the salary and position history for all employees.

SELECT H.SSN, H.AMOUNT, I.PCN, H.START_DATE, I.END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE H.SSN = I.SSN

AND I.START_DATE <= H.START_DATE
AND I.END_DATE < H.END_DATE
AND H. START_DATE < I.END_DATE

[)INCUMBENTS

SAL_HISTORY
[)

h overlaps-1 i h starts-1 i

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 404040

Sequenced Join (7)

Provide the salary and position history for all employees.

SELECT H.SSN, H.AMOUNT, I.PCN, I.START_DATE, H.END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE H.SSN = I.SSN

AND I.START_DATE > H. START_DATE
AND H. END_DATE <= I.END_DATE
AND I.START_DATE < H.END_DATE

[)INCUMBENTS

SAL_HISTORY
[)

h overlaps i h finishes-1 i

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 414141

Sequenced Join (8)

Provide the salary and position history for all employees.

SELECT H.SSN, H.AMOUNT, I.PCN, I. START_DATE, I. END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE . . .

. . . H.SSN = I.SSN
AND I.START_DATE > H.START_DATE
AND I.END_DATE < H. END_DATE

[)INCUMBENTS

SAL_HISTORY
[)

h during-1 i

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey

Sequenced Join (9)

Temporal Information Systems 42

Why four complicated cases – if the situations are exactly covered by OVERLAPS?

starts
during
equals

starts-1

during-1
finishes
overlaps

finishes-1

overlaps-1 OVERLAPS==

SELECT H.SSN, H.AMOUNT, I.PCN, I. START_DATE, I. END_DATE
…
WHERE …

I.START_DATE > H.START_DATE
AND I.END_DATE < H. END_DATE

The problem is to associate the correct choice of start and end point in the SELECT
clause with the particular case (represented by the WHERE condition), e.g.:

But there is a very elegant way out if using CASE in SELECT, …

© 2015 Prof. Dr. R. Manthey 4343

Sequenced Join: Ultra Short Version

SELECT H.SSN, H.AMOUNT,
(CASE WHEN I.START_DATE < H.START.DATE

THEN H.START_DATE
ELSE I.START_DATE

END) AS START_DATE,
(CASE WHEN I.END_DATE < H.END.DATE

THEN I.END_DATE
ELSE H.END_DATE

END) AS END_DATE
FROM SAL_HISTORY AS H,

INCUMBENTS AS I
WHERE I.SSN = H.SSN

AND (I.START_DATE, I.END_DATE)
OVERLAPS

(H.START_DATE, H.END_DATE)

Thanks for this to Stephan Zacharias in TIS 2011!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 4444

Sequenced Difference (1)

SELECT SSN
FROM INCUMBENTS AS I1
WHERE PCN = 455332

AND NOT EXISTS
(SELECT *
FROM INCUMBENTS AS I2
WHERE I2.SSN = I1.SSN

AND I2.PCN = 821197)

List the employees who are department heads but are not also professors!

non-temporal version: PCN 455332: job title „department head“

PCN 821197: job title „professor“

(SELECT SSN
FROM INCUMBENTS
WHERE PCN = 455332)
EXCEPT
(SELECT SSN
FROM INCUMBENTS
WHERE PCN = 821197)

equivalent:

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 4545

Sequenced Difference (2)

department head

department head

department head

department head

professor

professor

professor professor

There are four different cases how the „except“ situation may have arisen in history:

a)

b)

c)

d)

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 4646

Sequenced Difference (3)

department head

professor
a)

department head

professor
a)

This time, however, it is not sufficient to simply specify the depicted situation in terms
of SQL expressions. e.g.:

not professor

Instead, two specifications are required:
• The situation specific to the case has to take place, i.e., in case a),

the period of being department head overlaps
the period of being a professor, and the former starts earlier.

• No prior professorship period overlaps this department head period.

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 4747

Sequenced Difference (4a)

SELECT I1.SSN,
I1.START_DATE,
I2.START_DATE AS END_DATE

FROM INCUMBENTS AS I1,
INCUMBENTS AS I2

WHERE I1.PCN = 455332
AND I2.PCN = 821197
AND I1.SSN = I3.SSN
AND I1. START_DATE =< I2.START_DATE
AND I2. START_DATE =< I1.END_DATE
AND I1. END_DATE =< I2.END_DATE
AND -- No other professorship period OVERLAPS the department head

period „from the left“ (to be continued)

455332

821197

I1
I2I3

a)

Temporal Information Systems

Specifies „Case a“ exactly!

Specifies period during which
the „difference answer“ is valid
in „Case a“.

Surprising: Difference can be expressed (in the sequenced case) without negation!

© 2015 Prof. Dr. R. Manthey 4848

Sequenced Difference (4b)

SELECT I1.SSN,
I1.START_DATE, I2.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I2
WHERE …

AND NOT EXISTS
(SELECT *
FROM INCUMBENTS AS I3
WHERE I3.SSN = I1.SSN

AND I3.PCN = 821197
AND I1.START_DATE < I3.END_DATE
AND I3.START_DATE < I2.START_DATE)

455332

821197

I1
I2I3

a)

Temporal Information Systems

Specifies „overlapping from the left“!

© 2015 Prof. Dr. R. Manthey 4949

Sequenced Difference (5)

(SELECT . . . FROM . . .)
UNION

(SELECT . . . FROM . . .)
UNION

(SELECT . . . FROM . . .)
UNION

(SELECT . . . FROM . . .)

The entire query is once again composed of 4 different subqueries, each specifying one
of the 4 cases a) – d).

This time, however, there are potential overlaps of the four cases, thus duplicates may
arise and UNION is required instead of UNION ALL (as for sequenced joins):

List the employees who are (or were) department heads but are (or were) not also
professors (at that time) !

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey 505050

Nonsequenced (Temporal) Queries (1)

SELECT AMOUNT
FROM INCUMBENTS AS I,

POSITIONS AS P,
SAL_HISTORY AS H

WHERE I.SSN = H.SSN
AND I.PCN = P.PCN
AND P.JOB_TITLE_CODE = 20730

List all the salaries, past and present, of employees who had been a hazardous waste
specialist at some time.

Queries like this one refer to historical tables (all three of them are) and retrieves
answers from past data, too, but do not mention timestamp values in their output
or treat timestamp columns as „ordinary“ ones without requiring an expansion of
period timestamps into sequenced form.

This kind of query is called a nonsequenced query – the term does not mean the
same thing as non-temporal query, though!

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey

Nonsequenced Queries (2)

SELECT S2.SSN,
S2.HISTORY_START_DATE AS RAISE_DATE

FROM SAL_HISTORY AS S1,
SAL_HISTORY AS S2

WHERE S2.AMOUNT > S1.AMOUNT
AND S1.SSN = S2.SSN
AND S1.HISTORY_END_DATE = S2.HISTORY_START_DATE

When did employees receive salary raises?

This query is a nonsequenced one, too, as it refers to the entire history „as stored“
without being evaluated at each point in time (which would be sequenced).

It is not always that easy to recognize nonsequenced queries and to distinguish them
from nontemporal and/or sequenced ones!

Temporal Information Systems 51

© 2015 Prof. Dr. R. Manthey 52Temporal Information Systems 525252

Eliminating Duplicates From Answers to Queries (1)

SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-01
111223333 120033 1996-04-01 1996-10-01
111223333 120033 1996-04-01 1996-10-01
111223333 120033 1996-10-01 1998-01-01
111223333 120033 1997-12-01 1998-01-01

containing
sequenced
duplicates

non-sequenced
duplicates

non-temporal
duplicates

SELECT DISTINCT *
FROM INCUMBENTS

SELECT DISTINCT SSN, PCN
FROM INCUMBENTS

How to eliminate sequenced
duplicates?

eliminating non-sequenced
duplicates

eliminating non-temporal
duplicates

(Temporal key property doesn‘t help –
answers to queries don‘t have keys!)

© 2015 Prof. Dr. R. Manthey 53Temporal Information Systems 535353

Eliminating Duplicates (2)

SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-06-01
111223333 120033 1996-04-01 1996-10-01
111223333 120033 1996-04-01 1996-10-01
111223333 120033 1996-10-01 1998-01-01
111223333 120033 1997-12-01 1998-01-01

SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1998-01-01

SSN PCN START_DATE END_DATE
111223333 120033 1996-01-01 1996-10-01
111223333 120033 1996-10-01 1998-01-01

After eliminating all non-sequenced duplicates, „merging“ all overlapping periods for
the same non-temporal fact into one, results in a version free of sequenced duplicates:

The two remaining rows have periods of validity which meet – so why not „merge“
them into a single row as well (even though this is not strictly necessary for eliminating

duplicates):

1.

2.

3.

© 2015 Prof. Dr. R. Manthey 54Temporal Information Systems 545454

Coalescing

The operation of combining two overlapping or meeting periods into a single one that
comprises both (without extending any of them) is called coalescing in most research
papers. (from lat. alescere = grow up, co-alescere = grow together into one)

meets

overlaps

In order to reach a duplicate free (no overlapping periods for the same fact) or even
a „non-redundant“ (no meeting periods) representation of a piece of history, repeated
coalescing is required which continues until no further coalescing is possible any more.

This seems to require an imperative specification of sequenced duplicate freeness – but
in fact a declarative specification is possible (which does not make the iteration explicit)!

© 2015 Prof. Dr. R. Manthey 55Temporal Information Systems 555555

Eliminating Duplicates (3)

SELECT DISTINCT
F.SSN, F.PCN,
F.START_DATE, L.END_DATE

FROM INCUMBENTS AS F,
INCUMBENTS AS L

WHERE F.START_DATE <= L.END_DATE
AND F.END_DATE <= L.START_DATE
AND F.SSN = L.SSN AND F.PCN = L.PCN
AND -- No gaps between F.END_DATE and L.START_DATE
AND -- Can‘t be extended further

First

Last

„Coalescing“ the INCUMBENTS table by means of a single SQL query is quite a tricky
business (which took researchers many years to discover). It constructs gap-free periods
of validity with maximal length for each non-temporal fact:

© 2015 Prof. Dr. R. Manthey 56Temporal Information Systems 565656

Eliminating Duplicates (4)

-- No gaps between F.END_DATE and L.START_DATE
NOT EXISTS

(SELECT *
FROM INCUMBENTS AS M1
WHERE M1.SSN = F.SSN

AND M1.PCN = F.PCN
AND F.END_DATE < M1.START_DATE
AND M1.START_DATE < L.START_DATE
AND NOT EXISTS

(SELECT *
FROM INCUMBENTS AS M2
WHERE M2.SSN = F.SSN

AND M2.PCN = F.PCN
AND M2.START_DATE < M1.START_DATE
AND M1.START_DATE <= M2.END_DATE))

First Last

M2

M1

potential
gap

© 2015 Prof. Dr. R. Manthey 57Temporal Information Systems 575757

Eliminating Duplicates (5)

-- Can‘t be extended further
NOT EXISTS

(SELECT *
FROM INCUMBENTS AS T
WHERE T.SSN = F.SSN

AND T.PCN = F.PCN
AND ((T.START_DATE < F.START_DATE AND

F.START_DATE <= T.END_DATE)
OR (T.START_DATE <= L.END_DATE AND

L.END_DATE < T.END_DATE)))

First

Last

T

T

T meets F
or T overlaps F

T meets-1 F
or T overlaps-1 F

© 2015 Prof. Dr. R. Manthey 58Temporal Information Systems 5858

Current Insertions

INSERT INTO INCUMBENTS
VALUES (111223333, 999071, CURRENT_DATE, DATE '9999-12-31')

• Turning to modifications of historical tables now, let us assume for the time being,
that only current modifications are allowed, i.e., that history cannot be changed in a
transaction time table.

• If a table like INCUMBENTS were still non-temporal, all modifications would be
physical changes (i.e., really performed like that), e.g.:

• After turning INCUMBENTS into a historical one, the above insertion would become
a logical insertion, which is to be implemented (as current insertion) by means of the
following physical insertion, automatically adding the Start/End timestamps:

INSERT INTO INCUMBENTS
VALUES (111223333, 999071)

© 2015 Prof. Dr. R. Manthey 59Temporal Information Systems 5959

Current Deletions (1)

A (current) logical deletion, on the other hand, will have to be implemented by means
of a physical update, which „closes“ the validity period of the deleted row:

DELETE FROM INCUMBENTS
WHERE SSN = 111223333

AND PCN = 999071

UPDATE INCUMBENTS
SET END_DATE = CURRENT_DATE
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < CURRENT_DATE
AND END_DATE = DATE '9999-12-31'

logical deletion

corresponding physical update

currently valid

„deleted“ today
(for all of today!)

not inserted today

© 2015 Prof. Dr. R. Manthey 60Temporal Information Systems 6060

Current Deletions (2)

UPDATE INCUMBENTS
SET END_DATE = CURRENT_DATE
WHERE SSN = 111223333

AND PCN = 999071
AND START_DATE < CURRENT_DATE
AND END_DATE = DATE '9999-12-31'

• Here, we deviate from the „translation“ of the logical deletion to a physical update as
given by Snodgrass in his book (p. 183) and include the same additional condition he
is using himself on p. 185 when „translating“ the deletion part of a current (logical)
update:

• Thus, we avoid applying the deletion to facts being (logically) inserted on the same
day as the (logical) deletion. If the fact (111223333, 999071) was inserted and sub-
sequently deleted today, we end up with the following physical state of INCUMBENTS:

SSN PCN START_DATE END_DATE
111223333 999071 some day in the past today
111223333 999071 today 9999-12-31

deleted
inserted

• The fact (111223333, 999071) is true during all of today – we can‘t detect if the insertion
was before or after the deletion, and we can‘t detect a „gap“ in validity either. This is due
to the granularity DAY of the timestamps.

© 2015 Prof. Dr. R. Manthey 61Temporal Information Systems 6161

Current Updates (1)

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)
SELECT DISTINCT SSN, 908739, CURRENT_DATE, DATE '9999-12-31'
FROM INCUMBENTS
WHERE SSN = 111223333

AND START_DATE < CURRENT_DATE
AND END_DATE = DATE '9999-12-31‘ ;

UPDATE INCUMBENTS
SET END_DATE = CURRENT_DATE
WHERE SSN = 111223333

AND START_DATE < CURRENT_DATE
AND END_DATE = DATE '9999-12-31‘ ;

UPDATE INCUMBENTS
SET PCN = 908739
WHERE SSN = 111223333

A logical update such as . . .

. . . corresponds to a physical insertion of the updated row(s) plus a logical deletion, i.e.,
a physical update of the previous version of the affected row(s) – in this order:

© 2015 Prof. Dr. R. Manthey 62

Current Updates (2)

UPDATE INCUMBENTS
SET END_DATE = CURRENT_DATE
WHERE SSN = 111223333

AND START_DATE < CURRENT_DATE
AND END_DATE = DATE '9999-12-31‘ ;

• Again, we deviate from Snodgrass (p. 185) who doesn‘t include the END_DATE condition
this time. However, without this condition „historical“ facts (the END_DATE of which is
in the past) would be updated, too. This is not what is meant, obviously:

SSN PCN START_DATE END_DATE
111223333 999071 some day in the past today
111223333 908739 today 9999-12-31

old/deleted
new/inserted

• The new physical state of INCUMBENTS is as follows:

• Again, we have both facts being true today – and again we can‘t reconstruct what
happened today in which order (unless we use a finer granularity of timestamp).

Temporal Information Systems

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 63

SQL:2011 – A New Launch of Old Ideas

• In 2008, a (new) attempt of including temporal features into the SQL standard was
launched, this time not aiming at an (overambitious) separate part of the standard
(as done by previous attempts, that all failed), but at an inclusion of such features
into SQL/Foundation (the main part of the standard).

• First, a new time dimension called „system time“ was included (resembling transaction
time), in 2010 another dimension „application time“ (resembling valid time) was
included, too.

• New modification and query syntax clauses have been added to SQL. No new syntax
yet for more complex query types (e.g., no sequenced join, no coalescing)!

• A PERIOD data type for time intervals, however, was still not proposed. Periods still
have to be simulated using pairs of instants (with implicit [close, open)-semantics).

• On December 15, 2011, the new SQL standard SQL:2011 was published. It‘s foundation
part including the new temporal features comprises 1434 pages.

• By now, first major relational DBMS vendors are following SQL:2011 and have been
including the new language features into „their SQL dialect“ (sometimes „in dialect“).

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 64

SQL:2011 vs. Previously Used Terminology in Comparison

Research Terminology SQL:2011 Terminology
valid time application time
transaction time system time

timestamping versioning

valid time table application time period table
transaction time table system-versioned table
bitemporal table system-versioned

application time period table

The following introduction to the new temporal language features of SQL:2011 have
been taken from an early introductory lecture on this issue prepared and presented by
a leading researcher of IBM who has been the head of the committee which proposed
these extensions to the SQL standards committee. They will be continued in the next
chapter (on valid resp. application time).

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 65

SQL:2011 Tutorial by Krishna Kulkarni (IBM)

The following slides have been taken
from this tutorial available online.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 66

SQL:2011: System-Versioned Tables

(example from K. Kulkarni „Temporal Features in SQL Standard“)

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 67

SQL:2011: System-Versioned Tables (1)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

Creating a system-versioned table:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 68

SQL:2011: System-Versioned Tables (2)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

Inserting rows into a system-versioned table – period values provided by the system:

current (at that time)!

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 69

SQL:2011: System-Versioned Tables (3)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

new value: new row
old value: row „closed“

current (at that time)!

Updating fields in a system-versioned table – timestamps updated automatically:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 70

SQL:2011: System-Versioned Tables (4)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

deleted row „closed“

current (at that time)!

Deleting rows from a system-versioned table – timestamps updated automatically:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 71

SQL:2011: System-Versioned Tables (5)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

Querying a system-versioned table – a system time timeslice (past) query:

AS OF identifies timeslice queries

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 72

SQL:2011: System-Versioned Tables (6)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

Querying a system-versioned table – a system time current query:

No explicit mentioning of „current“! So every „normal“ SQL query is considered
a system time current query.

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 73

SQL:2011: System-Versioned Tables (7)

(example from K. Kulkarni „Temporal Features in SQL Standard“)

Querying a system-versioned table – a system time sequenced query:

© 2015 Prof. Dr. R. Manthey Temporal Information Systems 74

SQL:2011: System-Versioned Tables (8)

• The new FOR SYSTEM_TIME-clause selects a „period of past data“ (possibly including
the current timestamp) over which the given query is to be evaluated.

• In our example, the BETWEEN .. AND … syntax already present in SQL for arbitrary
data types has been used. Unfortunately, BETWEEN .. AND … includes both, start
and end value, i.e., it specifies [close, close] intervals. If this is intended for a particular
query, the old syntax can be used.

• A new variant of delimiters has been introduced since SQL:2011 which corresponds to
[close, open)-intervals – as required for temporal intervals, called periods:

FROM … TO … does not include the end point!

• Nevertheless, the range of expressivity of the FOR SYSTEM_TIME clause is still
rather limited! Even though it restricts the range of rows to be considered as input
to the query, it does not automatically generate the syntactical „constructs“ needed
for sequenced binary operators (e.g., join and difference) – these are still the job of
the SQL programmer. Automatic coalescing is also not yet supported.

